Dispersal Polymorphism and the Speed of Biological Invasions

نویسندگان

  • Elizabeth C. Elliott
  • Stephen J. Cornell
چکیده

The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about the effect of having a community of dispersal phenotypes on the rate of range expansion. We use reaction-diffusion equations to model the invasion of a species with two dispersal phenotypes into a previously unoccupied landscape. These phenotypes differ in both their dispersal rate and population growth rate. We find that the presence of both phenotypes can result in faster range expansions than if only a single phenotype were present in the landscape. For biologically realistic parameters, the invasion can occur up to twice as fast as a result of this polymorphism. This has implications for predicting the speed of biological invasions, suggesting that speeds cannot just be predicted from looking at a single phenotype and that the full community of phenotypes needs to be taken into consideration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invasion speeds in uctuating environments

Biological invasions are increasingly frequent and have dramatic ecological and economic consequences. A key to coping with invasive species is our ability to predict their rates of spread. Traditional models of biological invasions assume that the environment is temporally constant. We examine the consequences for invasion speed of periodic and stochastic £uctuations in population growth rates...

متن کامل

Invasion speeds in fluctuating environments.

Biological invasions are increasingly frequent and have dramatic ecological and economic consequences. A key to coping with invasive species is our ability to predict their rates of spread. Traditional models of biological invasions assume that the environment is temporally constant. We examine the consequences for invasion speed of periodic and stochastic fluctuations in population growth rate...

متن کامل

Density dependence in demography and dispersal generates fluctuating invasion speeds.

Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating...

متن کامل

Rapid evolution of dispersal ability makes biological invasions faster and more variable

Genetic variation in dispersal ability may result in the spatial sorting of alleles during range expansion. Recent theory suggests that spatial sorting can favour the rapid evolution of life history traits at expanding fronts, and therefore modify the ecological dynamics of range expansion. Here we test this prediction by disrupting spatial sorting in replicated invasions of the bean beetle Cal...

متن کامل

Demography and Dispersal: Calculation and Sensitivity Analysis of Invasion Speed for Structured Populations

A fundamental characteristic of any biological invasion is the speed at which the geographic range of the population expands. This invasion speed is determined by both population growth and dispersal. We construct a discrete-time model for biological invasions that couples matrix population models (for population growth) with integrodifference equations (for dispersal). This model captures the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012